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Gleason's Theorem and Cauchy's Functional 
Equation 

Anatolij Dvure~enskij 1 
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We study measures on the effect algebras of  the closed interval [0, !] and we 
describe regular or bounded measures. Applying Gleason's theorem for measures 
on the system of  all closed subspaces of  a Hilbert space, we show that any 
bounded measure m has the form re(t) = tin(l), t E [0, 1], and as a by-product 
it gives a solution of  Cauchy's basic functional equat ionf(x  + y) = f (x)  + f (y)  
forx,  y , x  + y E [0, 1]. 

1. E F F E C T  ALGEBRAS AND MEASURES ON [0, 1] 

The study of the mathematical foundations of quantum mechanics 
involves many interesting mathematical structures such as quantum logics, 
orthomodular posets, orthomodular lattices, and orthoalgebras. An important 
example of these structures is the system L(H) of all closed subspaces of a 
real or complex Hilbert space H. To describe unsharp measurements in 
quantum mechanics (Busch et al., 1991), we use the system %(H) of all 
effects, i.e., of all Hermitian operators A on a Hilbert space H such that O 
-< A -----/, where I is the identity on H. 

Recently there appeared a new axiomatic model (Giuntini and Greuling, 
1989; K6pka and Chovanec, 1994; Foulis and Bennett, 1994), effect algebras, 
which describe both algebraic and unsharp properties of a propositional 
system. 

An effect algebra is a nonempty set L with two particular elements 0, 
1 and with a partial binary operation ~): L • L ---> L such that for all a, b, 
c e L w e h a v e :  

(EAi) If a ~) b ~ L, then b ~ a a L and a ~) b = b E) a (commutativity). 

I Mathematical Institute, Slovak Academy of  Sciences, SK-814 73 Bratislava, Slovakia; e-mail: 
dvurecen @ mau.savba.sk. 

2687 

0020-7748/96/1200-2687509.50/0 �9 1996 Plenum Publishing Corporation 



2688 Dvure~ensk U 

(EAii) I f b ~ ) c  ~ L a n d a O ( b ~ ) c )  e L, t h e n a ~ b  e L a n d ( a  
b) ~ c E L, and a ~) (b ~9 c) = (a �9 b) ~ c (associativity). 

(EAiii) For any a e L there is a unique b e L such that a ~ b is 
defined, and a ~ b = 1 (or thocomplementat ion) .  

(EAiv)  If  1 �9 a is defined, then a = 0 ( z e r o - o n e  law). 

Let  a and b be two elements o f  an effect algebra L. We say that (i) a 
is orthogonal  to b and write a _1_ b iff a ~) b is defined in L; (ii) a is less 

than or  equal  to b and write a --< b iff there exists an element  c ~ L such 
that a _L c and a ~9 c = b (in this case we also write b -> a); (iii) b is the 
or thocomplemen t  of  a iff b is a (unique) element o f  L such that b .1_ a and 
a ~ ) b  = l, a n d b  = a • 

I f  a -< b, for the element  c in (ii) with a ~ c = b we write c = b O 
a, and c is called the dif ference of  a and b. It is evident that 

b G a = (a ~) b•  • 

An atom of  L is a nonzero  element  a e L such that if b -< a for b 
L, then either b = a or  b = 0. An  effect algebra L is said to be atomic if 
for any a ~ L \  {0} there exists an a tom b of  L such that b ~ a. 

Let  L be an effect algebra. Let  F = {al . . . . .  an} be a finite sequence 
in L. Recursively we define for n --> 3 

al f~ "'" (]~ an : =  (al f~ "'" ~ an-O ~ an (1.1) 

supposing that am @ " '  @ ao-i and (al @ "'" @ an-t) @ an exist in L. From 
the associativity of  @ in effect algebras we conclude that (1.1) is correctly 
defined. By definition we put al @ "'" @ an = al if n = l and a, @ . . .  @ 
an = 0 if n = 0. Then for any permutation (il . . . . .  in) o f  (1 . . . . .  n) and 
any k with 1 -< k <-- n we have 

al ~ "'" ~) an = ai I (~) "'" ~) ai n (1.2) 

al �9 " "  ~) an = (al ~) "'" ~) ak) ~) (ak+l ~ "'" ~ an) (1.3) 

We say that a finite sequence F --- {al . . . . .  an} in L is ~)-or thogonal  

if at ~ "'" ~ an exists in L. In this case we say that F has a ~)-sum, E])']i=l 
a; defined via 

~) ai = al ~ "'" ~ an (1.4) 
i ~ l  

It is clear that two elements a and b o f  L are orthogonal ,  i.e., a I b, 
iff {a, b} is ~ -o r thogona l .  

An  arbitrary system G = {a;},'~L of  not necessarily different elements 
o f  L is E)-orthogonal iff, for every finite subset F o f  I, the sys tem {ai}i~F is 
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E)-orthogonal. If G = {ai}i~t is ~)-orthogonal, so is any {ai}i~j for any J C_ 
I. An ~)-orthogonal system G = {ai}i~t of  L has a @-sum in L, written as 
~)iEI ai, iff in L there exists the join 

~) ai : =  v ~) ai (1.5) 
i~l F i~F 

where F runs over all finite subsets in I. In this case, we also write ~ G := 

~i~ l  ai. 
It is evident that if G = {al . . . . .  an} is ~-orthogonal,  then the ~-sums  

defined by (1.4) and (1.5) coincide. 
It is well known that any Boolean algebra, orthomodular lattice, and 

orthomodular poset can be organized into an effect algebra supposing that a 
E) b is defined iff a _1_ b and then a ~) b := a v b. Similarly, any orthoalgebra 
is an effect algebra. 

Two prototypes of  effect algebras are the following two examples. 

Example 1.1. The set %(/-/) of  all Hermitian operators A on H such that 
O --< A <-/ ,  where I is the identity operator on H, is an effect algebra (which 
is not an orthoalgebra); a partial ordering ----- is defined via A --< B iff (Ax, x) 
<- (Bx, x), x E H, and C = A fi) B iff (Ax, x) + (Bx, x) = (Cx, x), x E H. 
Any O-orthogonal system has the sum in %(H), and %(H) is not a lattice. 

Example 1.2. Let the closed interval [0, 1] be ordered in the natural 
way, and for two numbers a, b E [0, 1 ], we define a ~) b iff a + b <- 1 and 
we put then a E) b = a + b. Then [0, 1] is a totally ordered distributive 
lattice in that any ~-orthogonal  system has the sum in it. We recall that {as} 
is ~-orthogonal  iff {as} is summable and ~s as --< 1; then ~)s as = Es as. 

A real-valued mapping m on an orthoalgebra L is said to be a (finitely 
additive) measure if 

m(a ~) b) = m(a) + m(b), a, b e L 

It is clear that m(0) = 0. 
If for a mapping m: L --~ R we have 

m ( ~  ai) = ~ i~, (1.6) 

whenever ~)i~t ai exists in L, m is said to be a tr-additive or completely additive 
measure if (1.6) holds for any countable or any index set I, respectively. If 
a measure m is positive, then 

m(a) <-- m(b) whenever a <- b 

A positive measure m with m(1) = l is said to be a state; the system 
of all states on L is denoted by f~(L). A measure m is said to be (i) Jordan 
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if  there are two positive measures  mt and m2 on L such that m = m~ - m2; 
(ii) bounded  i f  sup{ Im(a) l: a ~ L} < ~.  

2. M E A S U R E S  ON [0, 1] 

In this section, we concentra te  on measures on the effect  algebra L = 
[0, 1]. Let  ~ be a nonvoid  subset of  [0, 1]. We say that a measure m on [0, 
1] is ~C-regular if given a ~ [0, 1] and given e > 0 there exists b ~ ~t~ with 
b < a such that I m(a) - m(b) l < r 

(1) Let  Qt be the set o f  all rational numbers  in [0, 1]. It is simple to 
show that if m is a measure on [0, 1] and if q ~ Q i, then 

m(q) = qm(l ) ,  q ~ QI (2.1) 

Indeed, re( l )  = m(~n=l l /n)  = nm(  l/n), so that m(1/n) = (1/n)m( l ). Similarly 
we have m(l/n) = m(~[= I l /n) = lm(l[n)  = ( l /n)m(l ) .  In an analogous way, 

m(qt)  = qm(t) (2.2) 

for all t ~ [0, 1], q ~ Qt  with qt ~ [0, 1]. 
(2) Hence,  if m is positive (or negative), then m is monotone ,  and given 

t E (0, 1), there are sequences o f  rational numbers  {qn} and {rn} from Qi 
such that q~ : t, r~ ", t. Then  

qnm(1) = m(qn) <- m(t) <- m(r~) = r~m(1) 

so that 

re(t) = tm(l) ,  t ~ [0, 1] (2.3) 

(3) Similarly, if m is nondecreasing (nonincreasing),  then m is o f  the 
form (2.3), and m is positive (negative).  Therefore ,  any Jordan measure m 
on [0, 1] is o f  the form (2.3). 

(4) Let  m be nonnegat ive  (nonposit ive) for  sufficiently small posit ive 
values o f  s, i.e., there is an interval [0, ~] such that f ( s )  >-- 0 I f ( s )  <-- 0] on 
[0, ~]. Then,  for  any t ~ (0, 1) and any s ~ [0, ~] with t + s --< 1, we have 

m(t  ~ s) = m(t) + m(s)  >-- m(t), t ~ (0, 1) 

which means that m is nondecreasing.  Hence,  m is o f  the form (2.3). 
We now formulate the main result o f  the paper. It is interesting that for  

the implication (x) ~ (ix) we use the Gleason theorem. 

Theorem 2.1. Let  m be a measure on [0, 1]. The  fol lowing statements 
are equivalent: 

(i) m(t) = tm(1), t ~ [0, 1]. 
(ii) m is Qr regu la r .  
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(iii) m is tr-additive. 
(iv) m is comple te ly  additive. 
(v) m is posit ive (negative). 
(vi) m is a Jordan measure.  
(vii) m is nondecreasing (nonincreasing).  
(viii) m is nonnegat ive  (nonposit ive) for  small positive values. 
(ix) m is cont inuous in [0, 1]. 
(x) m is bounded.  
(xi) m is bounded on some interval [a, b], where  0 -< a < b -< 1. 
(xii) m is cont inuous in some point to ~ [0, 1]. 

Proo f  The  equivalence of  (i), (v), (vi), (vii), and (viii) has been estab- 
lished above.  Due to (2.1), (ix) and (i) are equivalent.  

(ii) ~ (v). The  Qi-regular i ty  o f  m implies that given t ~ (0, 1), three 
is an increasing sequence of  natural numbers  {q,} with q, -< t such that m(t) 
= lim, m(qn) = l im, q,m(1) = tom(t), where to = l im, q,. Then  m(t) and 
m( l )  have the same sign, so that m is either positive or negative. 

The converse  implication is evident. 
(ii) and (iii) are equivalent,  and similarly, (ii) and (iv). 
(x) ~ (ix). Let  m be a bounded measure  on [0, 1]. Take the three- 

dimensional Hilbert  space R 3 and let ~(R3) be a unit sphere in R3, that is, 
~(R3)  = {X ~ g3: Ilxll = 1 }. Fix a unit vector  e e R3. Then the mapping x 

I(e, x) l 2, x E ,~(R3), maps ~~ onto the interval [0, 1]. Indeed, if e, is 
a unit vector  in R3 which is orthogonal  to e, then for unit vectors x~, :=  cos 
do e + sin do el, do e [0, ar/2], we have I(e, x , ) l  2 = cos2do. 

Define the mapping f :  ~(R3) --~ R v i a f (x )  :=  m( l (e ,  x) 12), x ~ 5e(R3). 
Then f is a f rame function in R3, i.e., if xt,  x2, x3 and Yt, Y2, Y3 are two 
orthonormal  bases in R3, then E3i=lf(xi) = ~3=1 f(Yi). The boundedness of  
m entails the boundedness  o f f .  Using the Gleason theorem for finite-dimen- 
sional Hilbert  spaces (Gleason, 1957; Dvurefienskij, 1993, Theorem 3.2.15), 
we find that f is continuous.  

If now t, ---> t in [0, 1 ], then there exist do,, do in [0, ~r/2] such that do, 
--~ do, and t, - I(e, x,l,,) 12 --~ t = I(e, x~,)l 2, so that m(t , )  ~ m(t) because 
x~,, --~ x~,. Therefore ,  m is continuous. 

The converse  statement is simple. 
(xi) ~ (x). First o f  all let a = 0, i.e., m is bounded on [0, b], where 0 

< b <- 1, so that there is a constant K --- 0 such that I m(s) I -< K for any s 
[0, b]. There  is an integer no such that 1 --< nob. Given t e (b, 1], there 

is an integer n, 1 <-- n -< no, such that (n - 1)b < t <-- nb. Then 

re(t) = m[(n - 1)b ~ (t - (n - l)b)] = (n - l )m(b) + m(t - (n - 1)b) 

<-- noK + K = (no + 1)K 

which means that m is bounded on [0, 1]. 
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Let now m be bounded on [a, b], where 0 < a < b -< 1. There  is an 
integer n~ such that a - n l ( b  - a )  <-- O. Given t E (0, a), there is an integer 
n, 1 --< n ~ nt, such that a - n ( b  - a )  < t <- a - ( n  - l )(b - a). Hence 
a < t + n ( b  - a )  <-- b and I m(t) + m ( n ( b  - a))l  -< K, so that Im(t) l -<: K 
+ n l l m ( b  - a) l, which proves that m is bounded on [0, b], and consequent ly  
m is bounded on [0, 1]. 

(xii) ~ (xi). Suppose m to be continuous in some point to e (0, I). 
Given e > 0 there is a 8 > 0 such that, for any t ~ [0, 1] with It - t01 < 
8, we have I m(t) - m(t0) l < e. So there is 8 > 0 such that m on [to - 8, 
to + 8] is bounded. If now m is cont inuous in to = 0 or in to = 1, we find 
intervals [0, 8] or [1 - 8, 1] on which m is bounded. �9 

R e m a r k  2 .2 .  Let ~ be a discontinuous additive functional on R (Hamel,  
1905); then m ( t )  :=  ~(t), t ~ [0, 1], is an unbounded measure on [0, 1]. 

3. C A U C H Y ' S  F U N C T I O N A L  E Q U A T I O N  

Cauchy 's  basic functional equation 

f ( x  + y )  = f ( x )  + f ( y )  (3.1) 

where x, y ~ R, was solved by Cauchy in 1821 (Acz61, 1966) and it was 
proved that i f f  is continuous everywhere  on R, then 

f ( x )  = c x  (3.2) 

where c is a real constant. If we limit ourselves to equation (3.1), where we 
suppose that (3.1) holds in the triangle 

0 - < x -  < 1, 0 - < y -  < 1, O < - x + y  < - 1 (3.3) 

we see that any measure m on [0, 1] induces a solution f ( x )  :=  re(x), x 
[0, 1]. Conversely,  any such solution o f  Cauchy 's  equation implies a measure 
m on [0, 1]. 

In the fundamental  work on functional equations (Acz61, 1966, Theorem 
2.1.2) there is a partial solution o f  (3.1) with (3.3): I f f ( x )  --> 0 for small 
positive x values, then 

f ( x )  = cx ,  x ~ [0, 1] (3.4) 

Using measures on [0, 1], we give the fol lowing solution of  functional 
equation (3.1) with (3.3). 

T h e o r e m  3 .1 .  Let f be a solution o f  Cauchy 's  functional equation (3.1) 
with (3.3). The fol lowing statements are equivalent: 

(i) f has the form (3.4). 
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(ii) f is continuous from the left on rational numbers in each point of 
[0, l]. 

(iii) f is nonnegative (nonpositive). 
( i v ) f  = ./'1 - f2, wheref , , f2 are nonnegative solutions of  (3. l) with (3.3). 
(v) f is nondecreasing (nonincreasing). 
(vi) f is nonnegative (nonpositive) for small positive values. 
( v i i ) f  is continuous in [0, 1]. 
(viii) f is bounded. 
(ix) f is bounded on some interval [a, b], where 0 -< a < b <- 1. 
( x ) f i s  continuous in some point to e [0, 1]. 

Proof It follows from Theorem 2.1. �9 

Let now Cauchy's functional equation f ( x  + y) = f(x) + f(y), x, y 
[0, 1] with x + y e [0, 1], be assumed to be X-valued, where X is a 
Banach space. 

Theorem 3.2. Let X be a Banach space and f be an X-valued solution 
of Cauchy's functional equation (3.1) with (3.3). The following statements 
are equivalent: 

( i ) f i s  bounded, i.e., sup{ [[f(x){[: x ~ [0, 1]} < oo. 
(ii) f is continuous. 
(i i i)f(x) = cf(1), x e [0, 1]. 

Proof (i) ~ (iii). L e t f b e  an X-valued solution of (3.1) with (3.3). Take 
an arbitrary continuous linear functional ~b on X. Then qJ o f is a bounded 
complex-valued solution of Cauchy's basic functional equation on [0, 1]. 
Assuming separately the real and imaginary parts of  ~b o f, we see that ~ o f 
is continuous. Hence, by Theorem 3.1, 

~( f (x ) )  = (~ oD(x )  = x(~, o f ) ( l )  = ~,(xf(l))  

for any x e [0, 1]. Because all bounded functionals on X separate the points 
of X, f(x) = xf( l )  for any x e [0, 1 ]. 

All other.implications are simple. �9 

Assume now that on the interval L = [0, 1] there is a general partial 
binary operation ~ satisfying (EAi)-(EAiv). If g: [0, 1] --~ [0, 1] with g(0) 
= 0, g(1) = 1, is a continuous, strictly increasing function, we define a ~g 
b for a, b E [0, 1] iff g(a) + g(b) -< 1, and then 

a ~g b := g-~(g(a) + g(b)) (3.5) 

An easy calculation shows that [0, 1] with 0, 1, and O s is an effect algebra. 
Conversely (Mesiar, 1994), any effect algebra [0, 1] with 0, 1, and ~ is of 
the form (3.5), and g is uniquely determined. 
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Theorem 3.3. L e t f b e  a solution to Cauchy's functional equation 

f ( x  ~)~ y) = f ( x )  + f ( y )  (3.6) 

for x, y, x ~g  y ~ [0, 1], where Og is induced by (3.5). Then the statement 

f ( x )  = g ( x ) f ( l ) ,  x ~ [0, 1] (3.7) 

is equivalent to any statement (ii)-(x) in Theorem 3.1. 

Proof. Suppose t ha t f  is any solution to (3.6). Define a new real-valued 
functionf(x):  [0, 1] ---> R v ia f (x)  = f ( ( g - l ( x ) ) ,  x E [0, 1]. T h e n f ( x  + y) 
= 3~(x) + .f(y) for all x, y ~ [0, 1 ] with x + y ~ [0, 1]. If, for example, f is 
assumed to be bounded, so is f, and by Theorem 3.1, f(x)  = xf(l) .  Hence 
re(x) = f ( g - I ( x ) )  = xf( l )  and 

f (g (x ) )  = f ( (g -~(g(x ) ) )  = f ( x )  = g(x).f(1) = g ( x ) f ( l )  �9 

Theorem 3.4. Let X be a Banach space and l e t f b e  a solution of  Cauchy's 
X-valued functional equation 

f ( x  ~)g y) = f ( x )  + f ( y )  

for x, y ~ [0, 1] with x ~g  y E [0, 1], where ~)e is defined by (3.5). The 
following statements are equivalent: 

(i) f ( x )  = g(x) f (1) ,  x ~ [0, 11. 
(ii) f is continuous. 
( i i i ) f i s  bounded, i.e., sup{llf(x)ll: x E [0, 111 < ~o. 

Proof. It follows the same idea as that of Theorem 3.3. �9 
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